目前日期文章:201505 (2)

瀏覽方式: 標題列表 簡短摘要

 

    在臨床實驗或介入型研究,經常需要對同一個受試個體(Subject)在不同的時間點觀察其反應,當觀察的時間點只有兩個時,可以用來分析的統計方法為paired t-test;如果觀察的個體數目太少,則會建議使用相依樣本的無母數檢定方法,如:Wilcoxon signed-rank test,若反應變項為類別型資料,且資料為相依樣本的情況下,其統計檢定方法為McNemar Test

 

如果觀察的時間點有兩個以上時,上述的方法則不再適用,此時,就必須使用到一些重覆測量的方法,如:

 

  1. 1.    Hotelling T2:反應變項為連續型資料,且符合常態分配假設之下,可分析單一樣本或兩樣本的重覆測量,是T teat的延伸。

 

  1. 2.    Friedmans test反應變項為連續型資料,且為小樣本的情況下使用,為單一樣本重覆測量。由於是無母數檢定方法,原始值必需先轉為rank型態。

 

  1. 3.    Cochran’s Q test:反應變項為類別型資料(二元型態,binomial)的情況下可使用,為單一樣本重覆測量,且無母數檢定方法。基本假設為不同時間點,感興趣的事件發生的機率相等。

 

  1. 4.    重覆測量型變異數分析(Repeated Measures ANOVA)

        其中兩個重要的基本假設為(1):不同個體(subject)之間無關聯性、(2)同一個個體(subject)在不同時間(visit)的測量有相關。在共變異數矩陣(Covariance matrix)的分析中有一個基本的假設,同一個個體(subject)在不同時間(visit)的測量之相關都一樣。事實上,距離愈前期的測量結果愈遠,測量的相關會愈來愈弱,與臨床上許多的實際狀況不符,這樣的相關矩陣稱為Compound Symmetry(CS)。檢定這項基本假設的方法為Mauchly’s test of Sphericity(球面性假設),若不符基本假設,應採取更適合的方法。

        Repeated Measures ANOVA可分析單一樣本與多組樣本的重覆測量,反應變項為連續型資料,且需符合常態分配的基本假設。資料為橫向資料,若有任一次的資料中有缺失值,將整個subject被刪除,因此分析的資料特性必須是完整資料(Complete case)。對於會隨時間改變的解釋變數(例如每次所測量的除反應變項以外之生化值),無法一一對應至每一個時間點的反應變數,因此僅能分析不隨時間改變的解釋變數(例如性別)

文章標籤

estat 發表在 痞客邦 留言(1) 人氣()

 

過去曾經介紹過以SASIFN(), LAG()等函數將資料向下垂直移動,但SAS可否有LAG()函數的相反函數,也就是將資料垂直向上移動的函數,答案應該是沒有的,但可透過PROC EXPAND程序執行資料的垂直向上以及向下的移動,甚至是移動數個列數,該語法屬於Time series(時間序列)的應用。

【程式一】建立範例資料,資料中包含ID(身份證號)sex(性別)Birthday(生日)date (就醫日期)

 

【程式一】

data aa;
        input id $ sex $ birthday yymmdd10. +1 date yymmdd10.;
        format birthday date yymmdd10.;
cards;
A01 F 1958-01-04 2001-02-03

estat 發表在 痞客邦 留言(0) 人氣()